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Osmium-catalyzed asymmetric dihydroxylation of olefins
provides one of the most efficient methods for the preparation of
chiral diols.1 Although the reactions could be applied to the
synthesis of pharmaceuticals, fine chemicals, etc., the high cost
of osmium and ligands as well as the high toxicity of osmium
catalysts, which may contaminate the obtained products, obstruct
their use in industry. To address this issue, soluble and insoluble
polymer-supported ligands have been developed by several
groups,2,3 but complete recovery and reuse of the osmium have
not yet been accomplished.4,5 In 1998, we reported microencap-
sulated osmium tetroxide on the basis of polystyrene (PS-MC
OsO4) as a polymer-supported osmium catalyst, which first
achieved complete recovery and reuse of the osmium component
in achiral oxidations.6 In this paper, we report recoverable and
reusable osmium-catalyzed asymmetric dihydroxylation of olefins
based on the microencapsulation technique.

In our initial studies, we intended to apply PS-MC OsO4 to
the asymmetric oxidation. After many trials, however, the yields
and selectivities as well as recovery of the catalyst were not
satisfactory, and we decided to change the polymer support.
Several polymer supports and preparative conditions were ex-
amined, and finally the desired osmium catalyst for the catalytic
asymmetric dihydroxylation of olefins was prepared using an

acryronitrile-butadiene-polystyrene (ABS) polymer as follows:7

ABS polymer8 (1.000 g) was dissolved in tetrahydrofuran (20
mL) at 70-80 °C, and to this solution was added OsO4 (0.200 g)
as a core. The mixture was stirred for 1 h atthis temperature and
then slowly cooled to 0°C. Coacervates (phase separation) were
found to envelop the core dispersed in the medium, and methanol
(30 mL) was added to harden the capsule walls. After 8 h, the
capsules were washed with methanol several times and dried at
room temperature for 24 h. Unencapsulated OsO4 was recovered
from the washings.9

ABS-based OsO4 (ABS-MC OsO4) thus prepared was first
tested in achiral dihydroxylation of olefins. In the presence of
ABS-MC OsO4 (5 mol %), styrene was treated withN-methyl-
morpholineN-oxide (NMO) in H2O-acetone-acetonitrile (1:1:
1). Styrene was not a good substrate in the dihydroxylation using
PS-MC OsO4 because styrene dissolved PS-MC OsO4. After 12
h at room temperature, methanol was added and the mixture was
stirred for 10 min. After filtration, the corresponding diol was
obtained in 93% yield and ABS-MC OsO4 was recovered
quantitatively. The recovered catalyst was used in the second,
third, and fourth runs, and no loss of activity was observed (93,
90, 87, and 89% yields, respectively, and ABS-MC OsO4 was
recovered quantitatively in all cases). Several other olefins were
then examined, and the results are summarized in Table 1. Various
olefins including cyclic and acyclic, terminal, mono-, di-, tri-,
and tetra-substituted olefins worked well to give the corresponding
diols in high yields.

Encouraged by these promising results, we then performed
asymmetric dihydroxylation of olefins according to the Sharpless
procedure.10 We chosetrans-methylstyrene as a model, and
several reaction conditions were examined. When 1,4-bis(9-O-
dihydroquinidinyl)phthalazine ((DHQD)2PHAL) was used as a
chiral source andtrans-methylstyrene was slowly added over 24
h to a mixture of ABS-MC OsO4, ((DHQD)2PHAL (5 mol %
each), and NMO, the desired diol was obtained in 88% yield with
84% ee.11 The osmium catalyst was recovered quantitatively by
simple filtration, and the chiral ligand was also recovered by
simple acid/base extraction (>95% recovery).12 The recovered
catalyst and the chiral source were reused several times, and no
loss of activity was observed even after the fifth use (Table 2).13

This system was applied to other olefins and the results are
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methylstyrene.trans-Methylstyrene was slowly added over 24 h to a mixture
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and the desired diol was obtained in 91% ee.
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summarized in Table 3. In most cases, the desired diols were
obtained in high yields with high enantiomeric excesses.14,15

Finally, a 100 mmol-scale experiment was demonstrated. To
a mixture of ABS-MC OsO4 (1.0 mmol, 1.0 mol %), (DHQD)2-
PHAL (2.0 mmol, 2.0 mol %), and NMO (130 mmol)15 was

slowly addedtrans-methylstyrene (100 mmol) over 24 h. The
desired diol was obtained in 91% yield with 89% ee, and>95%
of ABS-MC OsO4 and the chiral ligand was recovered.

In summary, we have developed a recoverable and reusable
polymer-supported osmium catalyst for asymmetric dihydroxy-
lation of olefins. The catalyst was readily prepared from OsO4

and an ABS polymer based on a microencapsulation technique.
It is noted that complete recovery of the toxic osmium catalyst
has been accomplished.
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Table 1. Achiral Dihydroxylation of Olefins Using ABS-MC
OsO4

a

a All reactions were carried out using MC OsO4 (5 mol %) and NMO
in H2O-acetone-CH3CN (1/1/1) at room temperature for 12 h.
b Carried out at 60°C.

Table 2. Reuse of ABS-MC OsO4

run yield (%) ee (%) recoverya,b

1 88 84 quant
2 75 95 quant
3 97 94 quant
4 81 96 quant
5 88 95 quant

a Recovery of ABS-MC OsO4. b Recovery of (DHQD)2PHAL )
>95%.

Table 3. Asymmetric Dihydroxylation Using ABS-MC OsO4

a 20 mmol-scale experiment was performed.
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